
Journal of Machine Learning Research 11 (2010) 849-872 Submitted 2/09; Revised 12/09; Published 2/10

A Streaming Parallel Decision Tree Algorithm

Yael Ben-Haim YAELBH @IL .IBM .COM

Elad Tom-Tov YOMTOV@IL .IBM .COM

IBM Haifa Research Lab
Haifa University Campus
Mount Carmel, Haifa 31905, ISRAEL

Editor: Soeren Sonnenburg

Abstract
We propose a new algorithm for building decision tree classifiers. The algorithm is executed in
a distributed environment and is especially designed for classifying large data sets and streaming
data. It is empirically shown to be as accurate as a standard decision tree classifier, while being
scalable for processing of streaming data on multiple processors. These findings are supported by
a rigorous analysis of the algorithm’s accuracy.

The essence of the algorithm is to quickly construct histograms at the processors, which com-
press the data to a fixed amount of memory. A master processor uses this information to find
near-optimal split points to terminal tree nodes. Our analysis shows that guarantees on the local
accuracy of split points imply guarantees on the overall tree accuracy.

Keywords: decision tree classifiers, distributed computing, streaming data, scalability

1. Introduction

We propose a new algorithm for building decision tree classifiers for classifying both large data
sets and streaming data. As recently noted (Bottou and Bousquet, 2008), the challenge which dis-
tinguishes large-scale learning from small-scale learning is that training time is limited compared
to the amount of available data. Thus, in our algorithm both training and testing are executed in
a distributed environment, using only one pass on the data. We refer to the new algorithm as the
Streaming Parallel Decision Tree (SPDT).

Decision trees are simple yet effective classification algorithms. One of theirmain advantages
is that they provide human-readable rules of classification. Decision treeshave several drawbacks,
one of which is the need to sort all numerical attributes in order to decide where to split a node.
This becomes costly in terms of running time and memory size, especially when decision trees
are trained on large data. The various techniques for handling large datacan be roughly grouped
into two approaches: performing pre-sorting of the data, as in SLIQ (Mehta et al., 1996) and its
successors SPRINT (Shafer et al., 1996) and ScalParC (Joshi et al., 1998), or replacing sorting with
approximate representations of the data such as sampling and/or histogram building, for example,
BOAT (Gehrke et al., 1999), CLOUDS (AlSabti et al., 1998), and SPIES(Jin and Agrawal, 2003).
While pre-sorting techniques are more accurate, they cannot accommodatevery large data sets or
streaming data.

Faced with the challenge of handling large data, a large body of work has been dedicated to par-
allel decision tree algorithms (Shafer et al., 1996; Joshi et al., 1998; Narlikar, 1998; Jin and Agrawal,

c©2010 Yael Ben-Haim and Elad Tom-Tov.

BEN-HAIM AND YOM-TOV

2003; Srivastava et al., 1999; Sreenivas et al., 1999; Goil and Choudhary, 1999). There are several
ways to parallelize decision trees, described in detail in Amado et al. (2001), Srivastava et al. (1999)
and Narlikar (1998). Horizontal parallelism partitions the data so that different processors see dif-
ferent examples.1 Vertical parallelism enables different processors to see different attributes. Task
parallelism distributes the tree nodes among the processors. Finally, hybridparallelism combines
horizontal or vertical parallelism in the first stages of tree construction withtask parallelism towards
the end.

Like their serial counterparts, parallel decision trees overcome the sorting obstacle by applying
pre-sorting, distributed sorting, and approximations. Following our interest in streaming data, we
focus on approximate algorithms. Our proposed algorithm builds the decisiontree in a breadth-first
mode, using horizontal parallelism. The core of our algorithm is an on-line method for building
histograms from streaming data at the processors. The histograms are essentially compressed repre-
sentations of the data, so that each processor can transmit an approximatedescription of the data that
it sees to a master processor, with low communication complexity. The master processor integrates
the information received from all the processors and determines which terminal nodes to split and
how.

This paper is organized as follows. In Section 2 we introduce the SPDT algorithm and the
underlying histogram building algorithm. We dwell upon the advantages of SPDT over existing
algorithms. In Section 3 we analyze the tree accuracy. In Section 4 we present experiments that
compare the SPDT algorithm with the standard decision tree. The experiments show that the SPDT
algorithm compares favorably with the traditional, single-processor algorithm. Moreover, it is scal-
able to streaming data and multiple processors. We conclude in Section 5.

2. Algorithm Description

Consider the following problem: given a (possibly infinite) series of trainingexamples{(x1,y1), . . . ,
(xn,yn)} wherexi ∈ Rd andyi ∈ {1, . . . ,c}, our goal is to construct a decision tree that will accurately
classify test examples. The classifier is built using multiple processing nodes(i.e., CPUs), where
each of the processing nodes observes approximately 1/W of the training examples (whereW is the
number of processing nodes). This partitioning happens for one of several reasons: for example, the
data may not be stored in a single location, and may not arrive at a single location, or it may be too
abundant to be handled by a single node in a timely manner.

Because of the large number of training examples, it is not feasible to store the examples (even
in each separate processor). Therefore, a processor can either save a short buffer of examples and
use them to improve (or construct) the classifier, or build a representativesummary statistic from
the examples, improving it over time, but never saving the examples themselves.In this paper we
take the latter approach.

Although the setting described here is generally applicable to streams of data,it is also appli-
cable to the classification of large data sets in batch mode, where memory and processing power
constraints require the distribution of data across multiple processors and with limited memory for
each processor.

We first present our histogram data structure and the methods related to it. We then describe the
tree building process.

1. We refer to processing nodes as processors, to avoid confusion with tree nodes.

850

A STREAMING PARALLEL DECISION TREE ALGORITHM

Algorithm 1 Update Procedure
input A histogramh = {(p1,m1), . . . ,(pB,mB)}, a pointp.
output A histogram withB bins that represents the setS∪{p}, whereS is the set represented byh.

1: if p = pi for somei then
2: mi = mi +1
3: else
4: Add the bin(p,1) to the histogram, resulting in a histogram ofB+1 binsh∪{(p,1)}. Denote

pB+1 = p andmB+1 = 1.
5: Sort the sequencep1, . . . , pB+1. Denote byq1, . . . ,qB+1 the sorted sequence, and letπ be a

permutation on 1, . . . ,B+ 1 such thatqi = pπ(i) for all i = 1, . . . ,B+ 1. Denoteki = mπ(i),
namely, the histogramh∪ (p,1) is equivalent to(q1,k1), . . . ,(qB+1,kB+1), q1 < .. . < qB+1.

6: Find a pointqi that minimizesqi+1−qi .
7: Replace the bins(qi ,ki), (qi+1,ki+1) by the bin

(

qiki +qi+1ki+1

ki +ki+1
,ki +ki+1

)

.

8: end if

2.1 On-line Histogram Building

A histogram is a set ofB pairs (called bins) of real numbers{(p1,m1), . . . ,(pB,mB)}, whereB is a
preset constant integer. The histogram is a compressed and approximaterepresentation of a setS
of real numbers. At any time we have|S| = ∑B

i=1mi , where|S| is the number of points inS. The
histogram data structure supports four procedures, namedupdate, merge, sum, anduniform. The
update procedure is based on an on-line clustering algorithm developed by Guedalia et al. (1999).
A demonstration of the algorithms on actual input is given in the appendix.

Algorithm 1 presents theupdate procedure, which adds a new point to a set that is already
represented by a given histogram. Themerge procedure (Algorithm 2) creates a histogram that rep-
resents the unionS1∪S2 of the setsS1,S2, whose representing histograms are given. The algorithm
is similar to the update algorithm; in the first step, the two histograms form a single histogram with
many bins. In the second step, bins which are closest are merged together (as in lines 5 and 6 in
Algorithm 1) to form a single bin. The process repeats until the histogram has B bins.

Thesum procedure estimates the number of points in a given interval[a,b], that belong to a set
whose histogram is given. Algorithm 3 describes how to calculate the sum for [−∞,b], and can be
used to calculate the sum for[a,b], since it is equal to the sum for[−∞,b] minus the sum for[−∞,a].

The algorithm assumes that for a bin(p,m), there arem points surroundingp, of which m/2
points are to the left of the bin andm/2 points are to the right. Consequently, the number of points
in the interval[pi , pi+1] is equal to(mi +mi+1)/2, which is the area of the trapezoid(pi ,0),(pi,mi),
(pi+1,mi+1),(pi+1,0), divided by (pi+1 − pi). To estimate the number of points in the interval
[pi ,b], for pi < b < pi+1, we draw a straight line from(pi ,mi) to (pi+1,mi+1). We setmb = mi +
mi+1−mi
pi+1−pi

(b− pi), so that(b,mb) is on this line. The estimated number of points in the interval[pi ,b]

is then the area of the trapezoid(pi ,0),(pi,mi),(b,mb),(b,0), divided again by(pi+1− pi). The
case whereb < p1 or b > pB requires special treatment. One possibility is to add two dummy bins
(p0,0) and(pB+1,0), wherep0 andpB+1 are chosen using prior knowledge, according to which all

851

BEN-HAIM AND YOM-TOV

Algorithm 2 Merge Procedure

input Histogramsh1 = {(p(1)
1 ,m(1)

1), . . . ,(p(1)
B1

,m(1)
B1

)}, h2 = {(p(2)
1 ,m(2)

1), . . . ,(p(2)
B2

,m(2)
B2

)}, an inte-
gerB .

output A histogram withB bins that represents the setS1∪S2, whereS1 andS2 are the sets repre-
sented byh1 andh2, respectively.

1: For i = 1, . . . ,B1, denotepi = p(1)
i andmi = m(1)

i . For i = 1, . . . ,B2, denotepB1+i = p(2)
i and

mB1+i = m(2)
i .

2: Sort the sequencep1, . . . , pB1+B2. Denote byq1, . . . ,qB1+B2 the sorted sequence, and letπ be a
permutation on 1, . . . ,B1 +B2 such thatqi = pπ(i) for all i = 1, . . . ,B1 +B2. Denoteki = mπ(i),
namely, the histogramh1∪h2 is equivalent to(q1,k1), . . . ,(qB1+B2,kB1+B2), q1 < .. . < qB1+B2.

3: repeat
4: Find a pointqi that minimizesqi+1−qi .
5: Replace the bins(qi ,ki), (qi+1,ki+1) by the bin

(

qiki +qi+1ki+1

ki +ki+1
,ki +ki+1

)

.

6: until The histogram hasB bins

Algorithm 3 Sum Procedure
input A histogram{(p1,m1), . . . ,(pB,mB)}, a pointb such thatp1 < b < pB.
output Estimated number of points in the interval[−∞,b].

1: Find i such thatpi ≤ b < pi+1.
2: Set

s=
mi +mb

2
· b− pi

pi+1− pi

where
mb = mi +

mi+1−mi

pi+1− pi
(b− pi).

3: for all j < i do
4: s= s+mj

5: end for
6: s= s+mi/2

or almost all the points inSare in the interval[p0, pB+1] (p0 andpB+1 can be determined on the fly
during the histogram’s construction).

The uniform (Algorithm 4) procedure receives as input a histogram{(p1,m1), . . . ,(pB,mB)}
and an integer̃B and outputs a set of real numbersu1 < .. . < uB̃−1, with the property that the number
of points between two consecutive numbersu j ,u j+1, and the number of data points to the left ofu1

and to the right ofuB̃−1, is |S|
B̃

. The algorithm works like thesum procedure in the inverse direction:
After the pointu j was determined, we analytically find a pointu j+1 such that the number of points

in [u j ,u j+1] is estimated to be equal to|S|
B̃

. This is very similar to the calculations performed in

852

A STREAMING PARALLEL DECISION TREE ALGORITHM

Algorithm 4 Uniform Procedure

input A histogram{(p1,m1), . . . ,(pB,mB)}, an integerB̃.
output A set of real numbersu1 < .. . < uB̃, with the property that the number of points between

two consecutive numbersu j ,u j+1, as well as the number of data points to the left ofu1 and to
the right ofuB̃, is 1

B̃ ∑B
i=1mi .

1: for all j = 1, . . . , B̃−1 do
2: Sets= j

B̃ ∑B
i=1mi

3: Find i such thatsum([−∞, pi]) < s< sum([−∞, pi+1]).
4: Setd to be the difference betweensandsum([−∞, pi]).
5: Search foru j such that

d =
mi +mu j

2
· u j − pi

pi+1− pi
,

where
mu j = mi +

mi+1−mi

pi+1− pi
(u j − pi).

Substituting

z=
u j − pi

pi+1− pi
,

we obtain a quadratic equationaz2 +bz+c = 0 with a = mi+1−mi , b = 2mi , andc = −2d.
Hence setu j = pi +(pi+1− pi)z, where

z=
−b+

√
b2−4ac

2a
.

6: end for

sum, where this time we are given the area of a trapezoid and have to compute the coordinates of its
vertices (see line 5 in Algorithm 4).

2.2 Tree Growing Algorithm

We construct a decision tree based on a set of training examples{(x1,y1), . . . ,(xn,yn)}, where
x1, . . . ,xn ∈ Rd are the feature vectors andy1, . . . ,yn ∈ {1, . . . ,c} are the labels. Every internal node
in the tree possesses two ordered child nodes and a decision rule of the form x(i) < a, wherex(i) is
the ith attribute anda is a real number. Feature vectors that satisfy the decision rule are directed to
the node’s left child node, and the other vectors are directed to the right child node. Thus, every
examplex has a path from the root to one of the leaves, denotedl(x). Every leaf has a labelt, so
that an examplex is assigned the labelt(l(x)).

Algorithm 5 provides an overview of the tree construction algorithm. We note that this descrip-
tion fits standard decision trees as well. Each time that line 3 is executed, we saythat a new iteration
has begun. If there are too many samples (possibly infinite in number), we read a predefined number
of samples; otherwise, we use the complete data set. A new level of nodes is appended to the tree in
each iteration. In line 5 we decide whether a leafv is to be split or labeled, according to a stopping
criterion. Possible stopping criteria can be some threshold on the number of samples reaching the
node, or on the node’s impurity. A node’s impurity is a functionG that measures the homogeneity

853

BEN-HAIM AND YOM-TOV

Algorithm 5 Decision Tree
input Training set{(x1,y1), . . . ,(xn,yn)}

1: Initialize T to be a single unlabeled node.
2: while there are unlabeled leaves inT do
3: Navigate data samples to their corresponding leaves.
4: for all unlabeled leavesv in T do
5: if v satisfies the stopping criterionor there are no samples reachingv then
6: Labelv with the most frequent label among the samples reachingv
7: else
8: Choose candidate splits forv and estimate∆ for each of them.
9: Split v with the highest estimated∆ among all possible candidate splits.

10: end if
11: end for
12: end while

of labels in samples reaching the node. Its parameters areq1, . . . ,qc, whereq j is the probability that
a sample reachingv has labelj andc is the number of labels. The most popular impurity functions
are the Gini criterion,

1−∑
j

q2
j

and the entropy function
−∑

j

q j lnq j where 0ln0≡ 0 .

In our analysis in Section 3, we requireG to be continuous and satisfyG({q j})≥ 1−maxj{q j}.
These properties hold for the Gini and entropy functions.

The notation∆, appearing in lines 8 and 9, represents the gap in the impurity function before
and after splitting. Suppose that an attributei and a thresholda are chosen, so that a nodev is split
according to the rulex(i) < a. Denote byτ the probability that a sample reachingv is directed tov’s
left child node. Denote further byqL, j andqR, j the probabilities of labelj in the left and right child
nodes, respectively. We define the function∆(τ,{q j},{qL, j},{qR, j}) = ∆(v, i,a) as

∆ = G({q j})− τG({qL, j})− (1− τ)G({qR, j}). (1)

To complete the algorithm’s description, we need to specify what are the candidate splits, men-
tioned in lines 8 and 9, and how the function∆ for each split is estimated in a distributed environ-
ment. We begin by providing an interpretation for these notions in the classicalsetting, that is, for
the standard, serial algorithm. Most algorithms sort every attribute in the training set, and test splits
of the formx(i) < a+b

2 , wherea andb are two consecutive numbers in the sorted sequence of theith
attribute. For every candidate split,∆ can be calculated precisely, as in (1).

In the parallel setting, we apply a distributed architecture that consists ofW processors (also
called workers). Each processor can observe 1/W of the data, but has a view of the complete
classification tree built so far. We do not wish each processor to sort its share of the data set,
because this operation is not scalable to extremely large data sets. Moreover, the communication
complexity between the processors must be a constant that does not depend on the size of the data
set. Our algorithm addresses these issues by trading time and communication complexity with

854

A STREAMING PARALLEL DECISION TREE ALGORITHM

Algorithm 6 Compress Data Sets
input 1/W of the training set, whereW is the number of processors
output histograms to be transmitted to the master processor

1: Initialize an empty histogramh(v, i, j) for every unlabeled leafv, attributei, and classj.

2: for all observed training samples(xk,yk), wherexk = (x(1)
k , . . .x(d)

k) do
3: if the sample is directed to an unlabeled leafv then
4: for all attributesi do
5: Update the histogramh(v, i,yk) with the pointx(i)

k , using theupdate procedure.
6: end for
7: end if
8: end for

classification accuracy. The processors build histograms describing thedata they observed and send
them to a master processor. Algorithm 6 specifies which histograms are built and how. The number
of bins in the histograms is specified through a trade-off between accuracy and computational load:
A large number of bins allows a more accurate description, whereas small histograms are beneficial
for avoiding time, memory, and communications overloads.

For every unlabeled leafv, attribute i, and classj, the master processor merges theW his-
togramsh(v, i, j) received from the processors. The master node now has an exact knowledge of
the frequency of each label in each tree node, and hence the ability to calculate the impurity of all
unlabeled leaves. Leaves that satisfy the stopping criterion are labeled. For the other leaves, the
questions remain of how to choose candidate splits and how to estimate their∆. They are answered
as follows. Letv be an unlabeled leaf (that remains unlabeled after the application of the stopping
criterion) and leti be an attribute. We first merge the histogramsh(v, i,1), . . . ,h(v, i,c) (c denotes
the number of labels). The new histogram, denotedh(v, i), represents theith dimension of feature
vectors that reachv, with no distinction between vectors of different labels. We now apply the
uniform procedure onh(v, i) with some choseñB. The resulting setu1 < .. . < uB̃−1 constitutes the
locations of the candidate splits for theith attribute. Finally,∆ for each candidate split is estimated
using thesum procedure and the histogramsh(v, i, j). We clarify the rationale behind this choice of
split locations. Suppose that the best split isx(i) < a, whereuk < a < uk+1. The number of points
in the interval[uk,a] is bounded, implying a bound on the degree of change in∆ if one splits atuk

instead ofa. This issue is discussed in more detail in Section 3.
Decision trees are frequently pruned during or after training to obtain smaller trees and better

generalization. In the experiments presented in Section 4, we adapted the MDL-based pruning
algorithm of Mehta et al. (1996), which is similar to the one used in CART (Breiman et al., 1984).
This algorithm involves simple calculations during node splitting that reflect the node’s purity. In a
bottom-up pass on the complete tree, some subtrees are chosen to be pruned, based on estimates of
the expected error rate before and after pruning. The distributed environment neither changes this
pruning algorithm nor does it affect its output.

2.3 Complexity Analysis

Every iteration consists of an updating phase performed simultaneously by all the processors and
a merging phase performed by the master processor. In the update phase, every processor makes
one pass on the data batch assigned to it. The only memory allocation is for the histograms being

855

BEN-HAIM AND YOM-TOV

constructed. The number of bins in the histograms is constant; hence, operations on histograms take
a constant amount of time. Every processor performs at mostN/W histogram updates, whereN is
the size of the data batch andW is the number of processors. There areW×L×c×d histograms,
whereL is the number of leaves in the current iteration,c is the number of labels, andd is the
number of attributes. Assuming thatW,L,c, andd are all independent ofN, it follows that the space
complexity isO(1). The histograms are communicated to the master processor, which merges them
and applies thesum anduniform procedures. If theuniform procedure is applied with a constant
parameter̃B, then the time complexity of the merging phase isO(1).

To summarize, each iteration requires the following:

• At mostN/W operations by each processor in the updating phase.

• Constant space and communication complexities.

• Constant time in the merging phase.

2.4 Related Work

In this section we discuss previous work on histogram and quantile approximations, as well as
procedures for building decision trees on parallel platforms.

2.4.1 HISTOGRAMS AND QUANTILES APPROXIMATIONS

Data structures that summarize large sets are substantial components of a variety of algorithms in
database management and data mining. Our histogram algorithms tackle two related problems:
data compression and quantile approximations.2 There is broad coverage of these topics in the
literature, with an inclination towards one pass algorithms, see Gilbert et al. (2002), Guha et al.
(2006), Ioannidis (2003) and Lin (2007) and references therein. Proposed solutions can be divided
into two categories: The first category consists of algorithms with proven approximation guarantees
(Cormode and Muthukrishnan, 2005; Gilbert et al., 2002; Greenwald and Khanna, 2001; Guha et al.,
2006). The demand for a guaranteed accuracy level forces these algorithms to use large amounts of
memory, that is, their space requirements are increasing functions of the data size. An exception is
the probabilistic algorithm of Manku et al. (1998), which receives an inputparameterδ and returns
approximate quantiles whose guarantees hold with probabilityδ. The space complexity of this
algorithm increases withδ but not with the data size. The second category, to which our algorithm
belongs, consists of heuristics that work well empirically and demand low amounts of space, but
lack any rigorous accuracy analysis (Agrawal and Swami, 1995; Jain and Chlamtac, 1985). To our
knowledge, distributed environments are not addressed in either of the twocategories, except for a
brief mention by Manku et al. (1998).

Guaranteed accuracy at the cost of non-constant memory and increasing processing time are
problematic because of the inherent nature of streaming data. For example,the algorithm proposed
by Guha et al. (2006) requires roughlyO(B2 logn) memory, wheren is the number of data points
andB the number of bins. Thus, for example, a stream of 1010 data points (not a large number in
today’s data environments) requires more than 20 times the memory of a comparable fixed-memory
algorithm.

2. For a sequenceSof real numbers, theφ-quantile, 0≤ φ≤ 1, is defined to be an elementx∈Ssuch that⌈φ|S|⌉ elements
of Sare smaller or equal tox.

856

A STREAMING PARALLEL DECISION TREE ALGORITHM

The use of a fixed-memory algorithm, like the one proposed in this paper, naturally comes at
a cost in accuracy. As we show, when the data distribution is highly skewed, the accuracy of the
on-line histogram decays. Therefore, in cases where the data can be assumed to have originated
in categorical distributions with a limited number of values or in distributions which are not highly
skewed, the proposed algorithm is sufficiently accurate. In other cases, where distributions are
known to be highly skewed, or memory sizes are not a major factor when executing the algorithm,
practitioners may prefer to resort to guaranteed accuracy algorithms. This replaces the first part of
the proposed algorithm, but keeps its higher levels intact.

2.4.2 PARALLEL DECISION TREES

The SPIES (Jin and Agrawal, 2003) and pCLOUDS (Sreenivas et al., 1999) algorithms build deci-
sion trees for streaming data and work in a distributed environment. They aresimilar to the SPDT
algorithm in that they use histograms to process the data in constant time and memory. There are,
however, three major differences between these algorithms and the SPDT algorithm and its anal-
ysis. The first difference is in the histogram building algorithm. Unlike SPDT,both SPIES and
pCLOUDS sample the data. The second difference is in the need of a second pass. CLOUDS
(AlSabti et al., 1998) has two versions, named SS and SSE.3 SSE and SPIES may require several
passes over the data, and therefore hold each data batch in memory. The purpose of the second pass
is to locate exactly the best split location for every node, and hence eventually to construct the same
tree as the standard algorithm. SS is more similar to SPDT, since both algorithms buildhistograms
with an equal number of points in each bin and take the boundaries of the histograms to be the
candidate splits. Since only a constant number of split locations is checked,it is possible that a
suboptimal split is chosen, which may cause the entire tree to be different from the one constructed
by the standard algorithm. The third difference between our work and previous works is our ability
to analytically show that the error rate of the parallel tree approaches the error rate of the serial tree,
even though the trees are not identical.

3. Bounding the Error of SPDT

In this section, we investigate the training error rate of SPDT. We adopt a simpler version of the
framework set by Kearns and Mansour (1999), which views tree nodes as weak learners. This
approach allows us to obtain an overall estimate of the tree by studying the local improvements in
classification accuracy induced by the internal nodes.

3.1 Background

Let n be the number of training samples used to train a decision treeT. For a tree nodev, denote by
nv the number of training samples that reachv, and byqv, j the probability that a sample reachingv
has labelj, for j = 1, . . . ,c. The training error rate ofT is

eT =
1
n ∑

v leaf inT

nv(1−max
j
{qv, j}).

3. pCLOUDS is a parallelization of the SSE version of CLOUDS. We mention theSS version as well because it can be
similarly parallelized.

857

BEN-HAIM AND YOM-TOV

Henceforth, we require that the impurity functionG is continuous and satisfiesG({q j}) ≥ 1−
maxj{q j}. The last inequality implies that we haveeT ≤ GT , where

GT =
1
n ∑

v leaf inT

nvG({qv, j}). (2)

For our analysis, we rewrite Algorithm 5 such that only one new leaf is added to the tree in
each iteration (see Algorithm 7). The resulting full-grown tree is identical to the tree constructed
by Algorithm 5. LetTt be the tree produced by Algorithm 7 after thetth iteration. Suppose that the
nodev is split in thetth iteration and assigned the rulex(i) < a, and letvL,vR denote its left and right
child nodes respectively. Then

GTt−1 −GTt

=
1
n
(nvG({qv, j})−nvLG({qvL, j})−nvRG({qvR, j}))

=
nv

n
∆(v, i,a).

It follows that a lower bound on∆(v, i,a) yields an upper bound onGTt and hence also oneTt .

Definition 1 An internal node v, split by a rulex(i) < a, is said to perform locally well with respect
to a function f({q j}) if it satisfies∆(v, i,a) ≥ f ({qv, j}). A tree T is said to perform locally well if
every internal node v in it performs locally well. Finally, a decision tree building algorithm performs
locally well if for every training set, the output tree performs locally well.

Suppose thatTt−1 has a leaf for whichnv
n f ({qv, j}) can be lower-bounded by a quantityh(t,GTt−1)

that depends only ont andGTt−1. Then a lower bound on the training error rate of an algorithm that
performs locally well can be derived by solving the recurrenceGTt ≤ GTt−1 − h(t,GTt−1). As a
simple example, considerf ({q j}) = αG({q j}) for some positive constantα. By (2), and since the
number of leaves inTt−1 is t, there exists a leafv in Tt−1 for which nv

n G({qv, j}) ≥ GTt−1/t, hence
nv
n f ({qv, j}) ≥ α

t GTt−1. Let ṽ be the node which is split in thetth iteration. By definition (see line 10
in Algorithm 7), nṽ

n ∆ṽ ≥ nv
n ∆v, where∆v and∆ṽ are the best splits forv andṽ. We have

GTt−1 −GTt =
nṽ

n
∆ṽ ≥

nv

n
∆v ≥

nv

n
f ({qv, j}) ≥

α
t

GTt−1.

Let G0 be an upper bound onGT0. Solving the recurrenceGTt ≤ (1−α/t)GTt−1 with initial value
G0, we obtainGTt ≤ G0(t −1)−α/2, thereforeeTt ≤ G0(t −1)−α/2.

Kearns and Mansour (1999) made a stronger assumption, named the WeakHypothesis Assump-
tion, on the local performance of tree nodes. For binary classification and a finite feature space, it
is shown that ifG(q1,q2) is the Gini index, the entropy function, orG(q1,q2) =

√
q1q2, then the

Weak Hypothesis Assumption implies good local performance (each splitting criterion with respect
to its own f (q1,q2)). Lower bounds on the training error of trees with these splitting criteria are
then derived, as described above. These bounds are subject to the validity of the Weak Hypothesis
Assumption.

858

A STREAMING PARALLEL DECISION TREE ALGORITHM

3.2 Main Result

To build an SPDT, we have to set the parametersB andB̃. Recall thatB is the number of bins in the
histograms constructed by the processors, andB̃ is the size of the output ofuniform. Encouraged
by empirical results concerning the histograms’ accuracy, (see Section 4), we setB = B̃ and assume
that all applications of theuniform andsum procedures during SPDT runtime provide us with exact
information on the data set. For example, it is assumed that∆ is calculated exactly and not only
“estimated” (see line 9 in Algorithm 5). We note that all our results remain intact also if we allow
the calculations to be somewhat biased (the empirical evidence points to a bias of about 5%).

It follows that the only source for sub-optimality with respect to standard decision trees is in the
choice of the candidate splits. We recall that for the standard decision tree, the number of candidate
splits for a nodev is equal to the number of training samples that reachv minus one. This luxury is
out of the reach of the SPDT because of scalability requirements. The SPDT thus must test only a
constant number of candidate splits before it announces the winning split. The following theorem
asserts that∆ for the split chosen by the SPDT algorithm can be arbitrarily close to the optimal∆
(of the split chosen by the standard algorithm). The number of bins depends on how close to the
real∆ we wish to be, and also on the shape of the training set, but not on its size.

Theorem 2 Assume that the functions operating on histograms return exact answers. Let v be a
leaf in a decision tree which is under construction, and letx(i) < a be the best split for v according
to the standard algorithm. Denoteτ,q j ,qL, j ,qR, j as in Section 2.2. Then for everyδ > 0 there exists
B that depends onτ,{q j},{qL, j},{qR, j}, and δ, such that the splitx(ĩ) < ã chosen by the SPDT
algorithm with B bins satisfies∆(v, ĩ, ã) ≥ ∆(v, i,a)−δ.

Proof. Fix B and consider the splitx(i) < uk, whereuk < a < uk+1 (takeuk = u1 if a < u1 or uk = ur

if a > ur ; in the sequel we assume without loss of generality thata > u1). Denote bỹτ, q̃L, q̃R the
quantities relevant to this split. Letρ j denote the probability that a training samplex that reachesv
satisfiesuk < x(i) < a and has labelj. Then

τ̃ = τ−ρ0−ρ1

q̃L, j =
τ ·qL, j −ρ j

τ̃

q̃R, j =
(1− τ)qR, j +ρ j

1− τ̃
.

By the continuity of∆(τ,{q j},{qL, j},{qR, j}), for everyδ > 0 there existsε such that

∆(τ,{q j},{qL, j},{qR, j})−∆(τ̃,{q j},{q̃L, j},{q̃R, j}) < δ.

for all ρ j < ε. Sinceρ j ≤ 1
B+1, we can guarantee thatρ j < ε for all j by settingB = 1/ε. We thus

have∆(v, ĩ, ã) ≥ ∆(v, i,uk) ≥ ∆(v, i,a)−δ, as required.
Theorem 2 implies the following corollary.

Corollary 3 Assume that the standard decision tree algorithm performs locally well with respect to
a function f({q j}), and that the functions operating on histograms return exact answers. Then for
every positive functionδ({q j}), the SPDT algorithm performs locally well with respect to f({q j})−
δ({q j}), in the sense that for every training set there exists B such that the tree constructed by the
SPDT algorithm with B bins performs locally well. Moreover, B does not depend on the size of the

859

BEN-HAIM AND YOM-TOV

Algorithm 7 Decision Tree One Node per Iteration
input training set{(x1,y1), . . . ,(xn,yn)}

1: Initialize T to be a single node.
2: while there are unlabeled leaves inT do
3: for all unlabeled leavesv in T do
4: if v satisfies the stopping criterionor there are no samples reachingv then
5: Labelv with the most frequent label among the samples reachingv
6: else
7: Choose candidate splits forv and estimate∆ for each of them.
8: end if
9: end for

10: Split an unlabeled leafv such thatnv∆ is maximal among all unlabeled leaves and all possible
candidate splits, wherenv is the number of samples reachingv.

11: end while

training set, implying constant memory and communication complexity and constant running time
at the master processor.

We conclude this section with an example in which we explicitly derive an upper bound on
the error rate of SPDT. Setf ({q j}) = αG({q j}) for a positive constantα, for which we have
seen in Section 3.1 thateTt ≤ G0(t −1)−α/2. We note that Kearns and Mansour (1999) show that
for G(q1,q2) =

√
q1q2, the Weak Hypothesis Assumption implies good local performance with

f (q1,q2) = αG(q1,q2). Applying Corollary 3 withδ({q j}) = α
2G({q j}) = f ({q j})/2, we deduce

that when using histograms with enough bins, the SPDT’s error rate is guaranteed to be no more
thanG0(t −1)−α/4.

4. Empirical Results

In the following section we empirically test the proposed algorithms. We first show the accuracy of
the histogram building and merging procedures, and later compare the accuracy of SPDT compared
to a standard decision tree algorithm.

4.1 Histogram Algorithms

We evaluated the accuracy of the histogram building and information extraction algorithms. We
ran experiments on seven synthetic sets, generated via different kinds of probability distributions,
summarized in Table 1. Each setS, consisting of 105 points, was partitioned into four equal parts,
denotedS1 −S4. For each partSk we built a histogramhk with B = 100 bins, using theupdate
procedure. We then ran theuniform procedure onhk with B̃ = 100, resulting in a sequence of
pointsu1, . . . ,u99. For each pair of subsequent numbersui ,ui+1, we checked how many points ofSk

are in the interval[ui ,ui+1]. We expect to see|Sk|
B̃

= 25000/100= 250 points in each such interval.
Our findings are summarized in Table 2. We observe that the mean absolute difference between 250
and the actual number of points in an interval is equal to 11.17 (4.47% of the expected quantity).

We repeat the same experiment on the histogramsh1,2,h3,4, obtained after mergingh1 with h2

andh3 with h4. The mean absolute difference between 50000/100= 500 and the number of points

860

A STREAMING PARALLEL DECISION TREE ALGORITHM

Distribution Probability density function

Normal f (x) = 1√
2πe−x2

Uniform f (x) = 1, 0≤ x≤ 1
Exponential f (x) = 1

µe−(x/µ), µ= 0.5, x≤ 0
Beta f (x) = 1

R 1
0 ta−1(1−t)b−1dt

xa−1(1−x)b−1, a = 0.5, b = 0.5, 0 < x < 1

Gamma f (x) = 1
baΓ(a)x

a−1e−x/b, a = 3, b = 1, x≥ 0

Lognormal f (x) = 1
xσ

√
2πe−(ln(x)−µ)2/2σ2

, µ= 1, σ = 0.5, x > 0

Chi-square f (x) = 1
2v/2Γ(v/2)

x(v−2)/2e−x/2, v = 10, x≥ 0

Table 1: Probability density functions of synthetic sets used in the experimentsdescribed in Section
4.1.

Distribution Mean Standard Deviation
Average of Average of Average of Average of

h1−h4 h1,2 andh3,4 h1,2,3,4 h1−h4 h1,2 andh3,4 h1,2,3,4

Normal 11.53 26.22 68.89 15.8 36.83 107.45
Uniform 5.99 18.57 34.13 7.55 24.09 46.84
Exponential 13.78 30.5 18.36 39.28 31.52 83.93
Beta 6.95 18.51 30.91 9.56 24.7 45.26
Gamma 11.87 20.4 61.7 15.68 32.08 84.41
Lognormal 15.93 34.75 72.62 21.59 45.03 93.84
Chi-square 12.12 28.17 56 16.42 38 73.75
Average over
all data sets 11.17 25.87 55.36 14.99 34.29 76.5
Percent error,
averaged over
all data sets 4.47 5.17 5.54

Table 2: Mean absolute difference between the number of points in[ui ,ui+1] and the desired number
and standard deviation of the number of points in[ui ,ui+1]. Details are in Section 4.1.

in (Sk∪Sk+1)∩ [ui ,ui+1], k = 1,3, is 25.87 (5.17% of the expected quantity). Finally, we merged
h1,2 with h3,4. Applying theuniform procedure, the obtained mean absolute difference between
1000 andS∩ [ui ,ui+1] is 55.36 (5.54% of the expected quantity).

Thesum anduniform procedures assume that there are(mi +mi+1)/2 points in every interval
[pi , pi+1]. We tested this assumption on the histogramsh1−h4,h1,2,h3,4 andh1,2,3,4. For h1,2,3,4,
the mean absolute differences between(mi +mi+1)/2 and the actual number of points in[pi , pi+1]
is 28.79. Recall that on average there are 1000 points in each interval, implying an error of 2.88%.
Details are in Table 3.

Figure 1 shows how accuracy is affected by the distribution’s skewness.4 The figure was ob-
tained by calculating the histogramsh1,2,3,4 and pointsu1, . . . ,u99 for different values of the param-

4. The skewness of a distribution is defined to beκ3/σ3, whereκ3 is the third moment andσ is the standard deviation.

861

BEN-HAIM AND YOM-TOV

Distribution Average of Average of
h1−h4 h1,2 andh3,4 h1,2,3,4

Normal 4.22 11.07 23.01
Uniform 5.06 14.18 30.28
Exponential 3.74 12.17 24.21
Beta 6.6 15.98 33.2
Gamma 4.02 12.56 18.94
Lognormal 3.68 13.52 29.29
Chi-square 4.14 12.42 28.58
Average over
all data sets 4.5 13.13 28.79
Percent error,
averaged over
all data sets 1.8 2.63 2.88

Table 3: Mean absolute difference between the number of points in[pi , pi+1] and(mi + mi+1)/2.
Details are in Section 4.1.

Figure 1: Standard deviation of the number if points in[ui ,ui+1] as a function of the distribution’s
skewness. The different degrees of skewness are obtained by varying the parameterv of
the chi-square distribution and the parameterb of the beta distribution witha = 0.5 (see
Table 1). More details are given in Section 4.1.

eters of the beta and chi-square distributions. We observe that highly skewed distributions exhibit
less accurate results.

862

A STREAMING PARALLEL DECISION TREE ALGORITHM

Data Set Number of Number of Number of
examples features classes

Adult 32561 (16281) 105 2
Isolet 6238 (1559) 617 2
Letter 20000 16 2
Nursery 12960 25 2
Page Blocks 5473 10 2
Pen Digits 7494 (3498) 16 2
Spam Base 4601 57 2
Magic 19020 10 2
Abalone 4177 10 28
Multiple Features 2000 649 11
Face Detection 100000 (10000) 900 2
OCR 100000 (10000) 1156 2

Table 4: Properties of the data sets used in the experiments. The number of examples in parentheses
is the number of test examples (if a train/test partition exists).

4.2 Evaluation of the SPDT Algorithms

We ran our experiments on ten medium-sized data sets taken from the UCI repository (Blake et al.,
1998) and two large data sets taken from the Pascal Large Scale Learning Challenge (Pascal, 2008).
The characteristics of the data sets are summarized in Table 4. For the UCI data sets, we applied ten-
fold cross validation when a train/test partition was not given. For the Pascal data sets, we extracted
105 examples to constitute a training set, and additional 104 examples to constitute a test set. We
set the number of bins to 50, and limited the depth of the trees to no more than 100 for the UCI data
sets and 10 for the Pascal data sets. We implemented our algorithm in the IBM Parallel Machine
Learning toolbox (PML), which runs using MPICH2, and executed it on an 8-CPU Power5 machine
with 16GB memory using a Linux operating system. We note that none of the experiments reported
in previous works involved both a large number of examples and a large number of attributes.

We began by testing the assumption that splits chosen by the SPDT algorithm areclose to
optimal. To this end, we extracted four continuous attributes from the training sets (we chose the
training set of the first fold if there was no train/test partition). For every attribute, we calculated
the following three quantities:∆ of the optimal splitting point,∆ of the splitting point chosen by
SPDT with 8 processors, and average∆ over all splitting points (chosen by random splitting). We
then normalized byG({q j}), that is,

∆̃ =
∆

G({q j})
= 1− τG({qL, j})+(1− τ)G({qR, j})

G({q j})
.

The normalized valuẽ∆ can be interpreted as the split’s efficiency. SinceG({q j}) is the maximum
possible value of∆, ∆̃ represents the ratio between what is actually achieved and the maximum that
can be achieved. Table 7 displays the gain of the various splitting algorithms.

863

BEN-HAIM AND YOM-TOV

Data Set Constant Standard SPDT SPDT SPDT SPDT
classification tree 1 worker 2 workers 4 workers 8 workers

Adult 24 15.73 15.79 15.88 15.69 15.83
Isolet 50 14.95 22.58 26.62 23.09 26.17
Letter 50 8.52 8.59 8.59 8.59 8.59
Nursery 34 2.07 2.17 2.17 2.17 2.17
Page Blocks 10 2.89 3.29 3.09 3.03 3.42
Pen Digits 48 5.37 3.77 3.63 3.63 3.63
Spam Base 39 8.17 6.91 7.02 7.15 7.22
Magic 35 17.91 18.38 18.41 17.95 17.92
Abalone 83.5 79.33 79.93 80.6 79.93 80
Multiple Features 90 8.85 8.5 8.15 8.5 8.7
Face Detection 8.5 - 3.31 4.18 4.13 4.03
OCR 48 - 44.1 42.85 39.35 40.73

Table 5: Percent error for UCI and Pascal data sets. The lowest error rate for each data set is marked
in bold. The “constant classification” column is the percent error of a classifier that always
outputs the most frequent class, that is, it is 100% minus the frequency of themost frequent
class.

Data Set Standard SPDT SPDT SPDT SPDT
tree 1 worker 2 workers 4 workers 8 workers

Adult 81.18 80.75 80.84 80.69 81.38
Isolet 89.7 77.72 69.45 73.93 70.71
Letter 95.56 94.89 94.89 94.89 94.91
Nursery 99.72 99.69 99.69 99.69 99.69
Page Blocks 95.48 94.69 95.84 96.28 95.05
Pen Digits 97.2 97.48 97.37 97.37 97.37
Spam Base 95.25 94.95 93.68 94.32 94.22
Magic 80.17 79.81 79.69 80.1 80.27
Face Detection - 97.76 97.32 97.25 95.44
OCR - 61.72 61.48 63.85 62.57

Table 6: Area under ROC curve (%) for UCI and Pascal data sets with binary classification prob-
lems. The highest AUC for each data set is marked in bold.

Data Set Attribute ∆̃OPTIMAL ∆̃SPDT ∆̃RANDOM

Isolet 1 0.0239 0.0231 0.0108
Page Blocks 9 0.1125 0.0985 0.0199
Spam Base 55 0.2044 0.1393 0.1295
Magic 1 0.128 0.1228 0.0304

Table 7: ∆̃ of splits chosen by the standard tree, SPDT, and random splitting. Details are given in
Section 4.2.

864

A STREAMING PARALLEL DECISION TREE ALGORITHM

Data Set Err. (%) Err. (%) AUC (%) AUC (%) Tree size Tree size
before after before after before after

pruning pruning pruning pruning pruning pruning
Adult 15.83 13.83 81.38 88.08 5731 359
Isolet 26.17 25.79 70.71 69.9 403 281
Letter 8.59 9.9 94.91 95.29 1069 433
Nursery 2.17 2.28 99.69 99.66 210 194
Page Blocks 3.42 3.46 95.05 95.19 62 29
Pen Digits 3.63 4 97.37 96.75 87 77
Spam Base 7.22 9.48 94.22 94.39 384 95
Magic 17.92 14.75 80.27 88.81 3690 258
Abalone 80 73.5 - - 4539 93
Multiple Features 8.7 8.25 - - 173 52
Face Detection 4.03 3.91 95.44 97.75 253 169
OCR 40.73 40.63 62.57 62.63 625 447

Table 8: Percent error, areas under ROC curves, and tree sizes (number of tree nodes) before and
after pruning, with eight processors.

We proceed to inspect the tree’s accuracy. Tables 5 and 6 display the error rates and areas under
the ROC curves of the standard decision tree and the SPDT algorithm with 1, 2, 4, and 8 processors.5

We note that it is infeasible to apply the standard algorithm on the Pascal data sets, due to their size.
For the UCI data sets, we observe that the approximations undertaken by the SPDT algorithm do
not necessarily have a detrimental effect on its error rate. The FF statistics combined with Holm’s
procedure (Dem̆sar, 2006) with a confidence level of 95% shows that the SPDT algorithm exhibited
accuracy that could not be detected as statistically significantly different from that of the standard
algorithm.

It is also interesting to study the effect of pruning on the error rate and tree size. Using the
procedure described in Section 2.2, we pruned the trees obtained by SPDT. Table 8 shows that
pruning usually improves the error rate (though not to a statistically significant threshold, using sign
test withp < 0.05) while reducing the tree size by 54% on average.

Figure 2 shows the speedup for different sized subsets of theface detection andOCR data
sets. Referring to data set size as the number of examples multiplied by the number of dimensions,
we found that data set size and speedup are highly correlated (Spearman correlation of 0.90). We
further checked the running time as a function of the data set size. In a logarithmic scale, we obtain
approximate regression curves (averageR2 = 0.99, see Figure 3). The slopes of the curves decrease
as the number of processors increases, and drops below 1 for eight processors. In other words, if we
multiply the data size by a factor of 10, the running time is multiplied by less than 10.

The results presented here fit the theoretical analysis of Section 2.3. Forlarge data sets, the
communication between the processors in the merging phase is negligible relative to the gain in the
update phase. Therefore, increasing the number of processors is especially beneficial for large data
sets.

5. The results for theOCR data set can be somewhat improved if we increase the tree depth to 25 instead of 10. For four
processors, we obtain an error of 32.56% and AUC of 67.5%.

865

BEN-HAIM AND YOM-TOV

Figure 2: Speedup of the SPDT algorithm for theface detection (top) andOCR (bottom) data
sets.

866

A STREAMING PARALLEL DECISION TREE ALGORITHM

Figure 3: Running time vs. data size for theface detection (top) andOCR (bottom) data sets.

867

BEN-HAIM AND YOM-TOV

5. Conclusions

We propose a new algorithm for building decision trees, which we refer to as the Streaming Parallel
Decision Tree (SPDT). The algorithm is specially designed for large data sets and streaming data,
and is executed in a distributed environment. Our experiments reveal that theerror rate of SPDT is
approximately the same as for the serial algorithm. We also provide a way to analytically compare
the error rate of trees constructed by serial and parallel algorithms without comparing similarities
between the trees themselves.

Acknowledgments

We thank the referees for their valuable comments.

Appendix A.

We demonstrate how the histogram algorithms run on the following input sequence:

23,19,10,16,36,2,9,32,30,45. (3)

Suppose that we wish to build a histogram with five bins for the first seven elements. To this
end, we perform seven executions of theupdate procedure. After reading the first five elements,
we obtain the histogram

(23,1),(19,1),(10,1),(16,1),(36,1).

as depicted in Figure 4(a). We then add the bin(2,1) and merge the two closest bins,(16,1) and
(19,1), to a single bin(17.5,2). This results in the following histogram, depicted in Figure 4(b):

(2,1),(10,1),(17.5,2),(23,1),(36,1).

We repeat this process for the seventh element: the bin(9,1) is added, and the two closest bins,
(9,1) and(10,1), form a new bin(9.5,2). The resulting histogram is given in Figure 4(c):

(2,1),(9.5,2),(17.5,2),(23,1),(36,1).

Let us now merge the last histogram with the following one:

(32,1),(30,1),(45,1).

Figure 5 follows the changes in the histogram during the three iterations of themerge procedure.
We omit details due to the similarity to theupdate examples given above. The final histogram is
given in Figure 5(d):

(2,1),(9.5,2),(19.33,3),(32.67,3),(45,1).

This histogram represents the set in (3).
We now wish to estimate the number of points smaller than 15. The leftmost bin(2,1) gives 1

point. The second bin, (9.5,2), has 2/2 = 1 points to its left. The challenge is to estimate how many
points to its right are smaller than 15. We first estimate that there are(2+3)/2 = 2.5 points inside
the trapezoid whose vertices are(9.5,0),(9.5,2),(19.33,3), and(19.33,0) (see Figure 6). Assum-
ing that the number of points inside a trapezoid is proportional to its area, the number of points

868

A STREAMING PARALLEL DECISION TREE ALGORITHM

(a) (b)

(c)

Figure 4: Examples of executions of theupdate procedure.

inside the trapezoid defined by the vertices(9.5,0),(9.5,2),(15,2.56), and(15,0) is estimated to
be

2+2.56
2

× 15−9.5
19.33−9.5

= 1.28.

We thus estimate that there are in total 1+1+1.28= 3.28 points smaller than 15. The true answer,
obtained by looking at the set represented by the histogram (see Equation(3)), is three points: 2, 9,
and 10.

The reader can readily verify that theuniform procedure withB̃= 3 returns the points 15.21 and
28.98. Each one of the intervals[−∞,15.21], [15.21,28.98], and[28.98,∞] is expected to contain
3.33 points. The true values are 3, 2, and 4, respectively.

References

Rakesh Agrawal and Arun Swami. A one-pass space-efficient algorithm for finding quantiles. In
Proceedings of COMAD, Pune, India, 1995.

Khaled AlSabti, Sanjay Ranka, and Vineet Singh. CLOUDS: Classification for large or out-of-core
datasets. InConference on Knowledge Discovery and Data Mining, August 1998.

869

BEN-HAIM AND YOM-TOV

(a) (b)

(c) (d)

Figure 5: An example of an execution of themerge procedure.

Figure 6: Thesum procedure.

870

A STREAMING PARALLEL DECISION TREE ALGORITHM

Nuno Amado, Joao Gama, and Fernando Silva. Parallel implementation of decision tree learning
algorithms. InThe 10th Portuguese Conference on Artificial Intelligence on Progress inArtificial
Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint
Solving, pages 6–13, December 2001.

Catherine L. Blake, Eamonn J. Keogh, and Christopher J. Merz. UCI repository of machine learning
databases. University of California, Irvine, Dept. of Information and Computer Sciences, 1998.
http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

Leon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in Neu-
ral Information Processing Systems, volume 20. MIT Press, Cambridge, MA, 2008. URL
http://leon.bottou.org/papers/bottou-bousquet-2008. to appear.

Leo Breiman, Jerome H. Friedman, Richard Olshen, and Charles J. Stone.Classification and Re-
gression Trees. Wadsworth, Monterrey, CA, 1984.

Graham Cormode and S. Muthukrishnan. An improved data stream summary:the count-min sketch
and its applications.Journal of Algorithms, 55(1):58–75, 2005.

Janez Dem̆sar. Statistical comparisons of classifiers over multiple data sets.Journal of Machine
Learning Research, 7:1–30, 2006.

Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-YinLoh. BOAT — optimistic
decision tree construction. InACM SIGMOD International Conference on Management of Data,
pages 169–180, June 1999.

Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss.How to summarize the
universe: dynamic maintenance of quantiles. InProceedings of the 28th VLDB Conference, pages
454–465, 2002.

Sanjay Goil and Alok Choudhary. Efficient parallel classification using dimensional aggregates. In
Workshop on Large-Scale Parallel KDD Systems, SIGKDD, pages 197–210, August 1999.

Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile sum-
maries. InProceedings of ACM SIGMOD, Santa Barbara, California, pages 58–66, ’may’ 2001.

Isaac D. Guedalia, Mickey London, and Michael Werman. An on-line agglomerative clustering
method for nonstationary data.Neural Comp., 11(2):521–540, 1999.

Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streamingalgorithms for
histogram construction problems.ACM Trans. on Database Systems, 31(1):396–438, ’mar’ 2006.

Yannis E. Ioannidis. The history of histograms (abridged). InProceedings of the VLDB Conference,
pages 19–30, 2003.

Raj Jain and Imrich Chlamtac. TheP2 algorithm for dynamic calculation of quantiles and his-
tograms without storing observations.Communications of the ACM, 28(10):1076–1085, ’oct’
1985.

871

BEN-HAIM AND YOM-TOV

Ruoming Jin and Gagan Agrawal. Communication and memory efficient parallel decision tree
construction. InThe 3rd SIAM International Conference on Data Mining, May 2003.

Mahesh V. Joshi, George Karypis, and Vipin Kumar. ScalParC: A new scalable and efficient parallel
classification algorithm for mining large datasets. InThe 12th International Parallel Processing
Symposium, pages 573–579, March 1998.

Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree learning
algorithms.Journal of Computer and System Sciences, 58(1):109–128, ’feb’ 1999.

Xuemin Lin. Continuously maintaining order statistics over data streams. InProceedings of the
18th Australian Database Conference, Ballarat, Victoria, Australia, 2007.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate medians and
other quantiles in one pass and with limited memory. InProceedings of ACM SIGMOD, Seattle,
WA, USA, pages 426–435, 1998.

Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A fast scalable classifier for data
mining. In The 5th International Conference on Extending Database Technology, pages 18–32,
1996.

Girija J. Narlikar. A parallel, multithreaded decision tree builder. Technical Report CMU-CS-98-
184, Carnegie Mellon University, 1998.

Pascal, 2008. Pascal large scale learning challenge, 2008.
http://largescale.first.fraunhofer.de, datasets can be downloaded from
http://ftp.first.fraunhofer.de/pub/projects/largescale.

PML. IBM Parallel Machine Learning Toolbox, 2009.
http://www.alphaworks.ibm.com/tech/pml.

John Shafer, Rakesh Agrawal, and Manish Mehta. SPRINT: A scalableparallel classifier for data
mining. InThe 22nd International Conference on Very Large Databases, pages 544–555, Septem-
ber 1996.

Mahesh K. Sreenivas, Khaled Alsabti, and Sanjay Ranka. Parallel out-of-core divide-and-conquer
techniques with applications to classification trees. InThe 13th International Symposium on
Parallel Processing and the 10th Symposium on Parallel and Distributed Processing, pages 555–
562, 1999. Available as preprint inhttp://ipdps.cc.gatech.edu/1999/papers/207.pdf.

Anurag Srivastava, Eui-Hong Han, Vipin Kumar, , and Vineet Singh. Parallel formulations of
decision-tree classification algorithms.Data Mining and Knowledge Discovery, 3(3):237–261,
September 1999.

872

